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Abstract. We present the design, implementation, and application of a
system, called CASS, for the analysis of functional logic programs. The
system is generic so that various kinds of analyses (e.g., groundness, non-
determinism, demanded arguments) can be easily integrated. In order
to analyze larger applications consisting of dozens or hundreds of mod-
ules, CASS supports a modular and incremental analysis of programs.
Moreover, it can be used by different programming tools, like documen-
tation generators, analysis environments, program optimizers, as well as
Eclipse-based development environments. For this purpose, CASS can
also be invoked as a server system to get a language-independent access
to its functionality. CASS is completely implemented in the functional
logic language Curry as a master/worker architecture to exploit parallel
or distributed execution environments.

1 Introduction

Automated program analyses are useful for various purposes. For instance, com-
pilers can benefit from their results to improve the translation of source into
target programs. Analysis information can be helpful to programmers to reason
about the behavior and operational properties of their programs. Moreover, this
information can also be documented by program documentation tools or inter-
actively shown to developers in dedicated programming environments. On the
one hand, declarative programming languages provide interesting opportunities
to analyze programs. On the other hand, their complex or abstract execution
model demands good tool support to develop reliable programs. Examples are
the detection of type errors in languages with higher-order features and the
detection of mode problems in the use of Prolog predicates.

This work is related to functional logic languages that combine the most im-
portant features of functional and logic programming in a single language (see
[7,19] for recent surveys). In particular, these languages provide higher-order
functions and demand-driven evaluation from functional programming together
with logic programming features like non-deterministic search and computing
with partial information (logic variables). This combination has led to new de-
sign patterns [5,8] and better abstractions for application programming. More-
over, program implementation and analysis aspects for functional as well as logic



languages can be considered in a unified framework. For instance, test cases for
functional programs can be generated by executing functions with logic variables
as arguments [13].

Automated program analyses have already been used for functional logic
programming in various situations. For instance, CurryDoc [16] is an automatic
documentation tool for the functional logic language Curry that analyzes Curry
programs to document various operational aspects, like the non-determinism
behavior or completeness issues. CurryBrowser [17] is an interactive analysis en-
vironment that unifies various program analyses in order to reason about Curry
applications. KiCS2 [10], a recent implementation of Curry that compiles into
Haskell, includes an analyzer to classify higher-order and deterministic opera-
tions in order to support their efficient implementation which results in highly
efficient target programs. Similar ideas are applied in the implementation of
Mercury [33] which uses mode and determinism information to reorder predi-
cate calls. Non-determinism information as well as information about definitely
demanded arguments has been used to improve the efficiency of functional logic
programs with flexible search strategies [18]. A recent Eclipse-based development
environment for Curry [29] also supports the access to analysis information dur-
ing interactive program development.

These kinds of program analyses and their different implementations demand
a unifying framework. This is the motivation for the current work. We present
CASS (Curry Analysis Server System) which is intended to be a central compo-
nent of current and future tools for functional logic programs. CASS provides
a generic interface to support the integration of various program analyses. Al-
though the current implementation is strongly related to Curry, CASS can also
be used for similar declarative programming languages, like TOY [27]. The anal-
yses are performed on an intermediate format into which source programs can
be compiled. CASS supports the analysis of larger applications by a modular
and incremental analysis. The analysis results for each module are persistently
stored and recomputed only if it is necessary. Since CASS is implemented in
Curry, it can be used as a library in tools implemented in Curry, like the docu-
mentation generator CurryDoc, the analysis environment CurryBrowser, or the
Curry compiler KiCS2. CASS can also be invoked as a server system providing a
text-based communication protocol in order to interact with tools implemented
in other languages, like the Eclipse plug-in for Curry. CASS is implemented as a
master/worker architecture, i.e., it can distribute the analysis work to different
processes in order to exploit parallel or distributed execution environments.

In the next section, we review some features of Curry. Section 3 discusses the
basic ideas of our analysis framework and shows how various kinds of program
analyses can be implemented and integrated into CASS. Some uses of CASS are
presented in Section 4 before its implementation is sketched in Section 5 and
evaluated in Section 6. Section 7 concludes with a discussion of related work.
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2 Curry and FlatCurry

In this section we review some aspects of Curry that are necessary to understand
the functionality and implementation of our analysis tool. More details about
Curry’s computation model and a complete description of all language features
can be found in [15,23].

Curry is a declarative multi-paradigm language combining in a seamless
way features from functional, logic, and concurrent programming. Curry has
a Haskell-like syntax1 [30] extended by the possible inclusion of free (logic)
variables in conditions and right-hand sides of defining rules. Curry also of-
fers standard features of functional languages, like polymorphic types, modules,
or monadic I/O which is identical to Haskell’s I/O concept [34]. Thus, “IO α”
denotes the type of an I/O action that returns values of type α.

A Curry program consists of the definition of functions or operations and the
data types on which the functions operate. Functions are defined by conditional
equations with constraints in the conditions. They are evaluated lazily and can
be called with partially instantiated arguments. As an example, consider the
following program:

data Bool = True | False
data List a = [] | a : List a

(++) :: [a] → [a] → [a]
[] ++ ys = ys
(x:xs) ++ ys = x : (xs ++ ys)

last xs | _ ++ [x] =:= xs = x where x free

The data type declarations define True and False as Boolean values and []
(empty list) and : (non-empty list) as the constructors for polymorphic lists (a
is a type variable ranging over all types and the type “List a” is usually written
as [a] for conformity with Haskell). The (optional) type declaration (“::”) of
the list concatenation operation (++) specifies that (++) takes two lists as input
and produces an output list, where all list elements are of the same (unspecified)
type.2 The definition of the operation last demonstrates the logic programming
features of Curry: the last element x of a list xs is computed by solving the
equational constraint “_ ++ [x] =:= xs”. Note that, in contrast to Prolog, logic
(free) variables must be explicitly declared by “free” (except for anonymous
variables denoted by “_”).

The operational semantics of Curry [1,15] is a conservative extension of lazy
functional programming (if free variables do not occur in the program or the
initial goal) and (concurrent) logic programming. To describe this semantics,
compile programs, or implement analyzers and similar tools, an intermediate
1 Variables and function names usually start with lowercase letters and the names of
type and data constructors start with an uppercase letter. The application of f to e
is denoted by juxtaposition (“f e”).

2 Curry uses curried function types where α->β denotes the type of all functions
mapping elements of type α into elements of type β.
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representation of Curry programs has been shown to be useful. Programs of this
intermediate language, called FlatCurry, contain a single rule for each function
where the pattern matching strategy is represented by case expressions. The
basic structure of FlatCurry is defined as follows:3

τ ::= α (type variable)
| T τ1 . . . τn (type constructor application)
| τ1 → τ2 (functional type)

P ::= D1 . . . Dm

D ::= f :: τ
f x1 . . . xn = e

p ::= c x1 . . . xn

e ::= x (variable)
| c e1 . . . en (constructor application)
| f e1 . . . en (function application)
| case e0 of {pk → ek} (rigid case distinction)
| fcase e0 of {pk → ek} (flexible case distinction)
| e1 or e2 (non-deterministic choice)
| let xk free in e (free variable introduction)

A type expression τ is a type variable, a constructed type (or a base type if
n = 0), or a functional type. A program P consists of a sequence of function
definitions D with pairwise different variables in the left-hand sides. The right-
hand sides are expressions e composed by variables, constructor and function
calls, case expressions, disjunctions, and introduction of free (unbound) variables.
A case expression has the form (f )case e of {c1 xn1

→ e1, . . . , ck xnk
→ ek},

where e is an expression, c1, . . . , ck are different constructors of the type of
e, and e1, . . . , ek are expressions. The pattern variables xni

are local variables
which occur only in the corresponding subexpression ei. The difference between
case and fcase shows up when the argument e is a free variable: case suspends
(which corresponds to residuation) whereas fcase non-deterministically binds
this variable to the pattern in a branch of the case expression (which corresponds
to narrowing).

The higher-order constructs of Curry are translated into FlatCurry by de-
functionalization [32]. Thus, lambda abstractions are transformed into top-level
functions and there is a predefined operation apply to apply an expression of
functional type to an argument (see [19,35] for more details).

As an example, consider the concatenation operation (++) shown above. Its
pattern matching on the first argument can be represented by the following
FlatCurry definition (where we use infix notations for readability):

3 ok denotes a sequence of objects o1, . . . , ok.
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(++) :: List a → List a → List a
x1 ++ x2 = fcase x1 of

[] → x2
y1 : y2 → y1 : (y2 ++ x2)

Note that it is possible to translate other functional logic languages, like
TOY [27], or even Haskell into this intermediate format. Since our analysis tool
is solely based on FlatCurry, it can also be used for other source languages
provided that there is a translator from such languages into FlatCurry.

Mature implementations of Curry, like PAKCS [20] or KiCS2 [10], provide
support for meta-programming by a library containing data types for represent-
ing FlatCurry programs and an I/O action for reading a module and translating
its contents into the corresponding data term. For instance, a module of a Curry
program is represented as an expression of type

data Prog = Prog String -- module name
[String] -- imported modules
[TypeDecl] -- type declarations
[FuncDecl] -- function declarations
[OpDecl] -- operator declarations

where the arguments of the data constructor Prog are the module name, the
names of all imported modules, the list of all type, function, and infix operator
declarations. Furthermore, a function declaration is represented as

data FuncDecl = Func QName
Int
Visibility
TypeExpr
Rule

where the arguments are the qualified name (of type QName, i.e., a pair of module
and function name), arity, visibility (Public or Private), type, and rule (of the
form “Rule arguments expr”) of the function. Finally, the data type for expres-
sions just reflects its formal definition:4

data Expr = Var Int
| Lit Literal
| Comb CombType QName [Expr]
| Case CaseType Expr [(Pattern,Expr)]
| Or Expr Expr
| Free [Int] Expr

data CombType = FuncCall | ConsCall

data Pattern = Pattern QName [Int]

Thus, variables are numbered, literals (like numbers or characters) are distin-
guished from combinations (Comb) which have a first argument to distinguish
constructor applications and applications of defined functions. The remaining
4 We present a slightly simplified version of the actual type definitions.
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data type declarations for representing FlatCurry programs are similar but we
omit them for brevity.

Using these data types, the concatenation operation (++), which is defined in
the module Prelude, is represented by the following data term of type FuncDecl:

Func ("Prelude","++")
2
Public
. . .
(Rule [1,2]

(Case Flex (Var 1)
[(Pattern ("Prelude","[]") [],

Var 2),
(Pattern ("Prelude",":") [3,4],
Comb ConsCall ("Prelude",":")

[Var 3,
Comb FuncCall ("Prelude","++")

[Var 4, Var 2]])]))

3 Implementing Program Analyses

In this section we show how a program analysis is represented and implemented
so that it can be used in the analysis system CASS.

3.1 Modeling Program Analyses

There are various frameworks and methods to analyze programs. Imperative
programs are often analyzed by the use of control-flow graphs: the program is
translated into a graph structure representing the potential control flow during
run time, and a program analysis associates analysis information with execu-
tion points in the graph. This information can be taken into account by a code
generator to produce efficient target code. Due to the fact that the control-flow
graph typically contains cycles, the program analysis is performed by a fixpoint
analysis according to the graph structure.

In declarative programs, the control flow is often not directly related to the
program structure, e.g., due to demand-driven evaluation strategies. Program
analyses for such languages often associates analysis information with the indi-
vidual operations (functions, predicates) of the program. For instance, strictness
analysis [28] computes for each function the arguments that must be evaluated
in order to compute a value for a function call, or minimal function graphs [26]
associates input/output pairs approximating possible function calls and their
results in a given program.

For our analysis framework, we follow a similar approach. If F is the set of
functions defined in a program and A an abstract domain representing analysis
information, then a program analysis is a mapping α : F → A which assigns to
each operation f ∈ F an abstract value α(f) ∈ A. Since this is the formal basis
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of our generic analysis framework, the abstract domain A can vary for different
program analysis. For a determinism analysis, A could contain the values det
and nondet, where α(f) = det indicates that the operation f is deterministic,
i.e., returns at most one value for a given argument value. For a demandedness or
strictness analysis, the abstract domain might be 2Nat, i.e., the analysis associates
with each operation the set of demanded arguments represented by their position
indices. Type inference can also be considered a program analysis [11] where the
abstract domain contains all type expressions defined by the type system.

This interpretation of program analysis is appropriate for various reasons:

1. It is rather general so that quite different kinds of program analyses can be
covered by appropriate domains, as discussed by the examples above.

2. The association of analysis information to operations contains useful infor-
mation for a variety of applications (e.g., program understanding, code gen-
eration, program optimization), as shown later.

3. It is also a key to an efficient modular analysis: In many cases, the analysis
results of an operation f depend on the analysis information associated with
the operations called by f . For instance, if an operation f calls an operation
g, the determinism status of f depends on the determinism status of g.
Thus, if we know the determinism status of all operations called by f , the
determinism status of f can be easily computed. Due to recursive calls, a
fixpoint computation is required in general. However, recursive calls do not
occur over module boundaries (at least, if cyclic module imports are not
allowed, as in Curry). As a consequence, one can directly use the analysis
results of imported operations so that fixpoint computations are required
only during the analysis inside a module. Hence, the overall analysis can be
performed in a modular manner, as we will see later.

This view of program analysis demands a bottom-up analysis of programs. First,
the properties of base operations are analyzed, then the properties of the oper-
ations using the base operations, and so on. In contrast, a top-down analysis
starting with an initial (“main”) expression is not supported by our framework.
On the one hand, one can argue that a bottom-up analysis is sufficient for inter-
active systems where the initial expression is not known at analysis time. On the
other hand, it is sometimes possible to express “top-down oriented” analyses, like
a groundness analysis in logic programming, in a bottom-up manner by choosing
appropriate abstract domains. For instance, [9] presents a type and effect sys-
tem to analyze groundness and non-determinism information in functional logic
programs. This can be implemented as a bottom-up analysis, as discussed later
in this paper.

A further important issue of our framework is the fact that we do not fix a
particular semantical model on which we base our analysis. In order to prove the
correctness of a program analysis, one has to define a concrete semantics which
is approximated by abstract operations that operate on abstract values [12]. In
order to cover various program analyses, the concrete semantics depends on the
individual program analyses.
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For example, consider a determinism analysis, as introduced above, where
the abstract value α(f) = det should indicate the fact that all applications of
f to some values (i.e., ground constructor terms) are evaluated in a determin-
istic manner. Hence, an appropriate concrete semantics for this analysis is a
small-step operational semantics where the notion of a non-deterministic step is
explicit. For instance, needed narrowing [4] or the small-step operational seman-
tics described in [1] model the operational behavior of contemporary functional
logic languages by a (non-deterministic) “single-step” evaluation relation “⇒.”
Now, we can define α(f) = det as the property that f is a deterministic opera-
tion, i.e., all evaluations of (f t1 . . . tn), where t1, . . . , tn are ground constructor
terms, are deterministic. To be more precise, if

(f t1 . . . tn)⇒ e1 ⇒ · · · ⇒ ek ⇒ e

and
(f t1 . . . tn)⇒ e1 ⇒ · · · ⇒ ek ⇒ e′

are two evaluations of (f t1 . . . tn), then e = e′ holds. Below we will show an
implementation of this determinism analysis in our framework.

As a further example, consider a demandedness analysis (also called strictness
analysis in functional programming). In this case, the abstract values associated
with an operation could be the set of demanded arguments of this operation.
Here, “demanded” means that if this argument is undefined, the result of apply-
ing the operation to this argument is also undefined. In this case, a small-step
operational semantics is not useful since it does not make the notion of “unde-
fined” explicit. More appropriate is a declarative or denotational semantics with
an explicit notion of undefined values. For instance, CRWL [14] is a standard
declarative (i.e., strategy-independent) semantics for functional logic programs.
In this semantics, the signature of functional logic programs is extended by a
special symbol ⊥ to represent undefined values. Hence, terms with occurrences of
⊥ are called “partial terms.” CRWL defines a calculus for approximation state-
ments of the form e → t with the intended meaning “the partial constructor
term t approximates the value of the expression e.” For instance, if f denotes an
infinite list defined by

f = 1 : f

then
f → ⊥, f → 1 : ⊥, f → 1 : 1 : ⊥, . . .

are valid statements w.r.t. CRWL. In particular, if e → ⊥ is the only CRWL-
statement for an expression e, then e is always undefined. Thus, the correctness of
a demandedness analysis can be stated as follows: i is a demanded argument of f
if, for all expressions e1, . . . , ei−1, ei+1, . . . , en, (f e1 . . . ei−1 ⊥ ei+1 . . . en)→ ⊥ is
the only statement derivable by CRWL. Thus, it is safe to evaluate a demanded
argument before calling the operation. Such an optimization can improve the
time and space behavior of functional logic programs, in particular, for non-
deterministic computations [18].
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As a consequence of the potential variety of semantical models and correct-
ness requirements, we do not consider these aspects in this paper, since our main
interest is to support the implementation of such program analyses in a practi-
cal system. Hence, we sketch in the following the steps required to implement a
specific program analysis with our system.

3.2 Determinism Analysis

As discussed above, a program analysis associates with each operation analy-
sis information describing some aspect of its semantics. Since most interesting
semantic aspects are not computable, they are approximated by some abstract
domain where each abstract value describes some set of concrete values [12]. For
instance, the abstract value det of a determinism analysis denotes the set of all
deterministic operations.

In order to approximate deterministic operations, a useful information is the
property whether an operation is defined by “overlapping rules”, i.e., whether
more than one rule defining this operation is applicable for some ground call to
this operation. An example for an operation that is defined by overlapping rules
is the “choice” operation

x ? y = x
x ? y = y

To implement an “overlapping rules” analysis, one can use Bool as the abstract
domain so that the abstract value False is interpreted as “defined by non-
overlapping rules” and True is interpreted as “defined by overlapping rules”. The
“overlapping rules” analysis has the type

FuncDecl → Bool

which means that we associate a Bool value with each function definition. In
contrast to the formal framework described above, we associate abstract values
with function definitions rather than function names. This simplifies the imple-
mentation since we do not have to look up information in the program in order
to compute analysis results, since the function definitions contain all information
that is necessary for this example.

Overlapping rules are represented by Or constructors when source programs
are mapped to FlatCurry programs [2,3]. For instance, the above choice operation
is mapped into the FlatCurry program
(?) :: a → a → a
x1 ? x2 = x1 or x2

Its representation as a data term of type FuncDecl is as follows:

Func ("Prelude","?")
2
Public
. . .
(Rule [1,2] (Or (Var 1) (Var 2)))
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Thus, we can implement the “overlapping rules” analysis by looking for occur-
rences of the data constructor Or in the definition of each function. Based on the
data type definitions sketched in Section 2 and some standard functions, we can
implement this analysis as follows:

isOverlapping :: FuncDecl → Bool
isOverlapping (Func _ _ _ _ (Rule _ e)) = orInExpr e

orInExpr :: Expr → Bool
orInExpr (Var _) = False
orInExpr (Lit _) = False
orInExpr (Comb _ _ es) = any orInExpr es
orInExpr (Case _ e bs) = orInExpr e

|| any (orInExpr . snd) bs
orInExpr (Or _ _) = True
orInExpr (Free _ e) = orInExpr e

As discussed above, a determinism analysis could be based on the abstract do-
main described by the data type

data DetDom = Det | NonDet

Here, Det is interpreted as “the operation always evaluates in a deterministic
manner on ground arguments” (see above for a precise specification). However,
NonDet is interpreted as “the operation might evaluate in different ways for given
ground arguments.” The apparent imprecision is due to the approximation of
the analysis. For instance, if the function f is defined by overlapping rules and
the function g might call f, then g is judged as non-deterministic (since it is
generally undecidable whether f is actually called by g in some run of the pro-
gram). Our analysis has to take into account such dependencies. To do so, the
determinism analysis requires to examine the current function as well as all di-
rectly or indirectly called functions for overlapping rules. Due to recursive func-
tion definitions, this analysis cannot be done in one shot—it requires a fixpoint
computation. CASS provides such fixpoint computations and requires only the
implementation of an operation of type

FuncDecl → [(QName,a)] → a

where “a” denotes the type of abstract values. The second argument of type
[(QName,a)] represents the currently known analysis values for the functions
directly used in this function declaration. One might ask why this information is
not represented as a mapping from function names to analysis results, i.e., why
the second argument has not the type

(QName → a)

The reason is that typical analyses which take dependencies into account are
all or any analysis, i.e., the analysis information about an operation combine
information about all or any of the operations on which they depend. If we
represent this analysis information as a mapping, we might also need the infor-
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mation about the domain of this mapping. Therefore, it is easier to work on a
list representation where all this information is directly available.

In our example, the determinism analysis can be implemented by the follow-
ing operation:

detFunc :: FuncDecl → [(QName,DetDom)] → DetDom
detFunc (Func f _ _ _ (Rule _ e)) calledFuncs =

if orInExpr e || freeVarInExpr e ||
any (==NonDet) (map snd calledFuncs)

then NonDet
else Det

Thus, it computes the abstract value NonDet if the function itself is defined by
overlapping rules or contains free variables that might cause non-deterministic
guessing (we omit the definition of freeVarInExpr since it is quite similar to
orInExpr), or if it depends on some non-deterministic function.

The actual analysis is performed by defining some start value for all functions
(the “bottom” value of the abstract domain, here: Det) and performing a fixpoint
computation for the abstract values of these functions. CASS uses a working list
approach as default but also supports other methods to compute fixpoints. The
termination of the fixpoint computation can be ensured by standard assumptions
in abstract interpretation [12], e.g., by choosing a finite abstract domain and
monotonic operations, or by widening operations.

3.3 Integrating an Analysis into CASS

To support the inclusion of different analyses in CASS, there is an abstract type
“Analysis a” denoting a program analysis with abstract domain “a”. Further-
more, CASS offers several constructor operations for various kinds of analyses.
Each analysis has a name provided as a first argument to these constructors.
The name is used to store the analysis information persistently and to pass
specific analysis tasks to workers (see below for more details). For instance, a
simple function analysis which depends only on a given function definition can
be defined by the analysis constructor

funcAnalysis :: String → (FuncDecl → a) → Analysis a

The arguments are the analysis name and the actual analysis function. For in-
stance, the “overlapping rules” analysis can be specified as

overlapAnalysis :: Analysis Bool
overlapAnalysis = funcAnalysis "Overlapping" isOverlapping

Another analysis constructor supports the definition of a function analysis with
dependencies:

dependencyFuncAnalysis ::
String → a → (FuncDecl → [(QName,a)] → a) → Analysis a
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Here, the second argument specifies the start value of the fixpoint analysis, i.e.,
the bottom element of the abstract domain. Thus, the complete determinism
analysis can be specified as

detAnalysis :: Analysis DetDom
detAnalysis = dependencyFuncAnalysis "Deterministic" Det detFunc

It should be noted that this definition is sufficient to execute the analysis with
CASS since the analysis system takes care of computing fixpoints, calling the
analysis functions with appropriate values, analyzing imported modules, etc.
Thus, the programmer can concentrate on implementing the logic of the analysis
and is freed from many tedious implementation details.

If we have defined an analysis in this way, we have to register it so that CASS
knows about its existence and can call it in the right way. In principle, this
registration could be done dynamically, but currently only a static registration
is supported for the sake of simplicity. For this purpose, the implementation of
CASS contains a constant

registeredAnalysis :: [RegisteredAnalysis]

keeping the information about all available analyses. To register a new analysis,
it has to be added to this list of registered analyses (as described below) and
CASS has to be recompiled.

Abstract values, like values of type Bool or DetDom, are program entities that
might be difficult to interpret for the user of CASS. Therefore, each analysis
must be registered in CASS together with a “show” function that maps abstract
values into strings to be shown to the user.5 An analysis can be registered with
the auxiliary operation

cassAnalysis :: Analysis a → (a → String) → RegisteredAnalysis

that has the specification of the program analysis and a show function as ar-
guments. The explicit definition of the show function for each analysis allows
for some flexibility in the presentation of the analysis information. For instance,
different analyses can use the same abstract domain, like Bool, with different
intended meanings.

To proceed with our example analyses, showing the results of the overlapping
and determinism analyses can be implemented as follows:

showOverlap :: Bool → String
showOverlap True = "overlapping"
showOverlap False = "non-overlapping"

showDet :: DetDom → String
showDet NonDet = "non-deterministic"
showDet Det = "deterministic"

With these definitions, we can register our analyses by the definition

5 Alternative visualizations of analysis information, e.g., as graphs, are planned for
the future.
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registeredAnalysis =
[cassAnalysis overlapAnalysis showOverlap
,cassAnalysis detAnalysis showDet ]

in the CASS implementation. After compiling CASS, they are immediately avail-
able.

3.4 Analysis of Types

Sometimes one is also interested in analyzing information about data types
rather than functions. For instance, the Curry implementation KiCS2 [10] has
an optimization for higher-order deterministic operations. This optimization re-
quires some information about the higher-order status of data types, i.e., whether
a term of some type might contain functional values.

CASS supports such analyses by appropriate analysis constructors. A simple
type analysis which depends only on a given type declaration can be specified
by

typeAnalysis :: String → (TypeDecl → a) → Analysis a

A more complex type analysis depending also on information about the types
used in the type declaration can be specified by

dependencyTypeAnalysis ::
String → a → (TypeDecl → [(QName,a)] → a) → Analysis a

Similarly to a function analysis, the second argument is the start value of the
fixpoint analysis and the third argument computes the abstract information
about the type names used in the type declaration.

The remaining entities in a Curry program that might be analyzed are data
constructors. Since their definition only contains the argument types, it may
seem uninteresting to provide a useful analysis for them. However, sometimes it
is interesting to analyze their context so that there is an analysis constructor of
type

constructorAnalysis ::
String → (ConsDecl → TypeDecl → a) → Analysis a

Thus, the analysis operation of type

(ConsDecl → TypeDecl → a)

gets for each constructor declaration also the corresponding type declaration as
an argument. This information could be used to compute the sibling construc-
tors, e.g., the sibling for the constructor True is False. The information about
sibling constructors is useful to check whether a function is completely defined,
i.e., contains a case distinction for all possible patterns. For instance, the oper-
ation (in FlatCurry notation)

not x = case x of True → False
False → True
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is completely defined whereas

cond b x = case b of True → x

is incompletely defined since it fails on False as the first argument. To check this
property, information about sibling constructors is obviously useful. But how can
we provide the information about sibling constructors, which is computed by a
type analysis, in a “complete pattern” analysis for functions? For this purpose,
CASS supports the combination of different analyses.

3.5 Analysis Combinators

Sometimes it is useful to define an analysis based on information computed by an-
other analysis. We already discussed the use of sibling constructors in an analysis
for complete pattern matching. Another example is the use of the “overlapping
rules” analysis in the determinism analysis. For such purposes, CASS supports
“analysis combinators” to implement the combination of different analyses. Thus,
an analysis developer can define an analysis that is based on information com-
puted by another analysis.

To make analysis combination possible, we need to pass information com-
puted by one analysis into another analysis. For this purpose, there is an ab-
stract type “ProgInfo a” to represent the analysis information of type “a” for a
given module and its imports. In order to look up analysis information about
some entity, there is an operation

lookupProgInfo:: QName → ProgInfo a → Maybe a

Now, CASS provides the analysis constructor operation

combinedFuncAnalysis :: String → Analysis b
→ (ProgInfo b → FuncDecl → a) → Analysis a

to implement a function analysis depending on some other analysis. The second
argument is some base analysis computing abstract values of type “b”. The anal-
ysis function (third argument) gets, in contrast to a simple function analysis,
the analysis information computed by this base analysis as its first argument.

For instance, if the sibling constructor analysis is defined as

siblingCons :: Analysis [QName]
siblingCons = constructorAnalysis . . .

then the pattern completeness analysis might be defined by

patCompAnalysis :: Analysis Bool
patCompAnalysis =

combinedFuncAnalysis "PatComplete" siblingCons isPatComplete

isPatComplete :: ProgInfo [QName] → FuncDecl → Bool
isPatComplete siblinginfo fundecl = . . .

Thus, one can use the (type analysis) information about sibling constructors
(siblinginfo) inside the definition of pattern completeness.
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Similarly, other kinds of analyses can also be combined with some base anal-
ysis by using the following analysis constructors:

combinedTypeAnalysis :: String → Analysis b
→ (ProgInfo b → TypeDecl → a) → Analysis a

combinedDependencyFuncAnalysis :: String → Analysis b → a
→ (ProgInfo b → FuncDecl → [(QName,a)] → a) → Analysis a

combinedDependencyTypeAnalysis :: String → Analysis b → a
→ (ProgInfo b → TypeDecl → [(QName,a)] → a) → Analysis a

For instance, an analysis for checking whether a function is totally defined, i.e.,
always reducible for all ground arguments, can be based on the pattern complete-
ness analysis. It is a dependency analysis so that it can be defined as follows (in
this case, True is the bottom element since the abstract value False denotes
“might not be totally defined”):

totalAnalysis :: Analysis Bool
totalAnalysis =

combinedDependencyFuncAnalysis "Total" patCompAnalysis True isTotal

isTotal :: ProgInfo Bool → FuncDecl → [(QName,Bool)] → Bool
isTotal pcinfo fdecl calledfuncs =

(maybe False id
(lookupProgInfo (funcName fdecl) pcinfo))

&& all snd calledfuncs

Hence, a function is totally defined if it is pattern complete and depends only
on totally defined functions.

Further examples of combined analyses are the higher-order function analysis
used in KiCS2 (see above) where the higher-order status of a function depends on
the higher-order status of its argument types, and the non-determinism analysis
of [9] where non-determinism effects are analyzed based on groundness informa-
tion.

4 Using the Analysis System

As mentioned above, a program analysis is useful for various purposes, e.g.,
the implementation and transformation of programs, tool and documentation
support for programmers, etc. Therefore, the results computed by some analysis
registered in CASS can be accessed in various ways. Currently, there are three
methods for this purpose:

Batch mode: CASS is started with a module and analysis name. Then this
analysis is applied to the module and the results are printed (using the
analysis-specific show function, see above).

API mode: If the analysis information should be used in an application im-
plemented in Curry, the application program could use the CASS interface
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Fig. 1. Using CASS in different contexts

operations to start an analysis and use the computed results for further
processing.

Server mode: If the analysis results should be used in an application imple-
mented in some language that does not have a direct interface to Curry, one
can start CASS in a server mode. In this case, one can connect to CASS via
some socket using a simple communication protocol that is specified in the
documentation of CASS.

Figure 1 shows some uses of CASS which are discussed in the following. The use
of CASS in batch mode is obvious. This mode is useful to get a quick access
to analysis information so that one can experiment with different abstractions,
fixpoint computations, etc.

If one wants to access CASS inside an application implemented in Curry,
one can use some interface operation of CASS. For instance, CASS provides an
operation

analyzeGeneric :: Analysis a → String
→ IO (Either (ProgInfo a) String)

to apply an analysis (first argument) to some module (whose name is given in
the second argument). The result is either the analysis information computed
for this module or an error message in case of some execution error. This access
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to CASS is used in the documentation generator CurryDoc [16] to describe some
operational aspects of functions (e.g., pattern completeness, non-determinism,
solution completeness), the Curry compiler KiCS2 [10] to get information about
the determinism and higher-order status of functions, and the non-determinism
optimizer described in [18] to obtain information about demanded arguments
and non-deterministic functions. Furthermore, there is also a similar operation

analyzeModule ::
String → String → IO (Either (ProgInfo String) String)

which takes an analysis name and a module name as arguments and yields
the textual representation of the computed analysis results. This is used in the
CurryBrowser [17] which allows the user to browse through the modules of a
Curry application and apply and visualize various analyses for each module or
function. Beyond some specific analyses like dependency graphs, all function
analyses registered in CASS are automatically available in the CurryBrowser.

The server mode of CASS is used in a recently developed Eclipse plug-in
for Curry [29] which also supports the visualization of analysis results inside
Eclipse. Since this plug-in is implemented in a Java-based framework, the access
to CASS is implemented via a textual protocol over a socket connection. The
protocol defines a couple of commands to use CASS, like

GetAnalysis
SetCurryPath <dir1>:<dir2>:...
AnalyzeModule <analysis name> <otype> <module name>
. . .

The command GetAnalysis allows to query the names and output formats (see
below) of all available analyses. The Eclipse plug-in for Curry uses this command
to initialize the analysis selection menus. The command SetCurryPath instructs
CASS to use the given directories to search for modules to be analyzed. This is
necessary since the CASS server might be started in a different location than its
client.

To analyze a complete module, the client of CASS can use the command
AnalyzeModule which applies an analysis to a module and returns the analysis
results in the specified format (second argument). CASS currently supports plain
strings, XML, or a Curry term format as output formats. However, it is up to the
implementer of a program analysis to support other formats. Currently, we are
working on more options to visualize analysis information in the Eclipse plug-in
rather than strings, e.g., term or graph visualizations.

Beyond the analysis of a complete module, there are also commands to return
analysis information of the interface of the module or individual entities like
operations, types, or data constructors.

5 Implementation

As mentioned above, CASS is implemented in Curry using the features for meta-
programming as sketched in Section 2. Since the analysis programmer only pro-
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vides operations to analyze a function, type, or data constructor, as shown in
Section 3, the main task of CASS is to supply these operations with the appro-
priate parameters in order to compute the analysis results.

CASS is intended to analyze larger applications consisting of many modules.
Thus, a simple implementation by concatenating all modules into one large pro-
gram to be analyzed would not be efficient enough. Hence, CASS performs a
separate analysis of each module by the following steps:

1. The imported modules are analyzed.
2. The analysis information of the interface of the imported modules are loaded.
3. The module is analyzed. If the analysis is a dependency analysis, it is eval-

uated by a fixpoint computation where the specified start value is used as
initial values for the locally defined (i.e., non-imported) entities.

Obviously, this scheme can be simplified in case of a simple analysis without
dependencies, since such an analysis does not require the imported entities. For
a combined analysis, the base analysis is performed before the main analysis is
executed.

In order to speed up the complete analysis process, CASS implements a
couple of improvements to this general analysis process sketched above. First,
the analysis information for each module is persistently stored. Hence, before
a module is analyzed, it is checked whether there already exists a storage with
the analysis information of this module and whether the time stamp of this
information is newer than the source program with all its direct or indirect
imports. If the storage is found and is still valid, the stored information is used.
Otherwise, the information is computed as described above and then persistently
stored. This has the advantage that, if only the main module has changed and
needs to be re-analyzed, the analysis time of a large application is still small.

To exploit multi-core or distributed execution environments, the implementa-
tion of CASS is designed as a master/worker architecture where a master process
coordinates all analysis activities and each worker is responsible to analyze a sin-
gle module. Thus, when CASS is requested to analyze some module, the master
process computes all import dependencies together with a topological order of
all dependencies. The standard prelude module (without import dependencies)
is the first module to be analyzed and the main module is the last one. The
master process iterates on the following steps until all modules are analyzed:

– If there is a free worker and all imports of the first module are already
analyzed, pass the first module to the free worker and delete it from the list
of modules.

– If the first module contains imports that are not yet analyzed, wait for the
termination of an analysis task of a worker.

– If a worker has finished the analysis of a module, mark all occurrences of
this module as “analyzed.”

Since contemporary Curry implementations do not support thread creation, the
workers are implemented as processes that are started at the beginning and
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terminated at the end of the entire execution. The number of workers can be
defined by some system parameter.

The current distribution of CASS6 contains fourteen program analyses, in-
cluding the analyses discussed in Section 3. Further analyses include a “solution
completeness” analysis (which checks whether a function might suspend due
to residuation), a “right-linearity” analysis (used to improve the implementa-
tion of functional patterns [6]), an analysis of demanded arguments (used to
optimize non-deterministic computations [18]), or a combined groundness/non-
determinism analysis based on a type and effect system [9].

6 Practical Evaluation

We have already discussed some practical applications of CASS in Section 4.
These applications demonstrate that the current implementation with a module-
wise analysis, storing analysis information persistently, and incremental re-
analysis is good enough to use CASS in practice. In order to get some ideas
about the efficiency of the current implementation, we made some benchmarks
and report their results in this section. Since all analyses contained in CASS
have been developed and described elsewhere (see the references above), we do
not evaluate their precision but only their execution efficiency.

CASS is intended to analyze larger systems. Thus, we omit the data for an-
alyzing single modules but present the analysis times for four different Curry
applications: the interactive environment (read/eval/print loop) of KiCS2, the
analysis system presented in this paper, the interactive analysis environment
CurryBrowser [17], and the module database,7 a web application generated from
an entity/relationship model with the web framework Spicey [22]. In order to get
an impression of the size of each application, the number of modules (including
imported system modules) is shown for each application. Typically, most mod-
ules contain 100-300 lines of code, where the largest one has more than 900 lines
of code.

For the benchmarks, we applied two kinds of function analysis with depen-
dencies, i.e., where fixpoint computations are required to compute the analysis
results: an analysis of demanded arguments and a groundness analysis.

The analysis of demanded arguments has already been introduced in Sec-
tion 3. The abstract domain of this analysis is

type DemandedArgs = [Int]

Thus, if the demandedness analysis computes a list [x1,...,xk] for an operation
f , then the argument at position xi is demanded (i = 1, . . . , k). For instance, the
list of demanded arguments of the list concatenation (++) is [1], i.e., only the first
argument is demanded. The basic structure of this analysis is described in [18]
where the analysis results are used to improve non-deterministic computations
by some program transformation.
6 CASS is part of the distributions of the Curry systems KiCS2 [10] and PAKCS [20].
7 http://mdb.ps.informatik.uni-kiel.de/
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Application: KiCS2 REPL CASS CurryBrowser ModuleDB
Modules: 32 46 71 85
Analysis: Demand Ground Demand Ground Demand Ground Demand Ground
1 worker 8.32 8.50 10.19 10.27 19.22 19.36 29.61 30.79
2 workers: 5.97 5.98 6.85 6.95 12.32 12.49 20.16 20.51
4 workers: 5.58 5.57 6.14 6.24 10.21 10.66 18.30 18.19
Re-analyze: 1.41 1.39 1.24 1.26 1.99 2.00 2.44 2.43

Table 1. Using CASS in different contexts

The groundness analysis is influenced from logic programming. The ground-
ness status of arguments are often used to improve the target code of compiled
programs, as in the language Mercury with its strong mode system [33]. In func-
tional logic programs without restrictive modes, groundness information can be
used to improve the precision of a determinism analysis, as shown in [9], where a
type and effect system is proposed to analyze groundness and non-determinism
information in functional logic programs. For instance, the determinism analysis
presented in Section 3.2 classified an operation as potentially non-deterministic
if its definition contains a free variable. However, if this free variable is passed
to another operation that ignores this argument or binds it in a deterministic
manner, the defined operation is actually deterministic although it contains a
free variable. Thus, the information about the groundness of functional calls rel-
ative to the groundness of its arguments could be quite valuable. Therefore, the
abstract domain for a groundness analysis of functional logic programs can be
defined as follows:

data Ground = G | P [Int] | A

The abstract value G denotes an operation that definitely returns a ground term,
P [x1,...,xk] an operation that might return a non-ground value if the argument
at position i is non-ground (for some i ∈ {x1, . . . , xk}), and A an operation
that might return a non-ground value. For instance, the groundness information
associated with the list concatenation (++) is P [1,2], and it is G for the negation
operation not defined in Section 3.4. Since this kind of groundness information
does not depend on the call structure of the program w.r.t. some main expression,
it can be computed in a bottom-up manner so that it fits well to our analysis
framework. Details about its computation can be found in [9].

Table 1 contains the elapsed time (in seconds) needed to analyze the applica-
tions described above for different numbers of workers. Each analysis has always
been started from scratch, i.e., all persistently stored information were deleted
at the beginning, except for the last row which shows the times to re-analyze
the application where only the main module has been changed. In this case, the
actual analysis time is quite small but most of the total time is spent to check all
module dependencies for possible updates. The benchmarks were executed on a
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Linux machine running Ubuntu 12.04 with an Intel Core i5 (2.53GHz) processor
with four cores where CASS was compiled with KiCS2 (Version 0.3.1).

The speedup related to the number of workers is not optimal. This might be
due to the fact that the dependencies between the modules are complex so that
there are not many opportunities for an independent analysis of modules, i.e.,
workers might have to wait for the termination of the analysis of modules which
are imported by many other modules. Nevertheless, the approach shows that
there is a potential to exploit the computing power offered by modern computers.
Furthermore, the absolute run times are acceptable. It should also be noted that,
during system development, the times are lower due to the persistent storing of
analysis results.

7 Conclusions and Related Work

In this paper we presented CASS, a tool to analyze functional logic programs.
CASS supports various kinds of program analyses by a general notion of analysis
functions that map program entities into analysis information. In order to im-
plement an analysis that also depends on information about other entities used
in a definition, CASS supports “dependency analyses” that require a fixpoint
computation to yield the final analysis information. Moreover, different analyses
can be combined so that one can define an analysis that is based on the results
of another analysis. Using these different constructions, the analysis developer
can concentrate on defining the logic of the analysis and is freed from the details
to invoke the analysis on modules and complete application systems. To analyze
larger applications efficiently, CASS performs a modular and incremental anal-
ysis where already computed analysis information is persistently stored. Thus,
CASS does not support top-down or goal-oriented analyses but only bottom-up
analyses which is acceptable for large applications or interactive systems with
unknown initial goals. The implementation of CASS supports different modes of
use (batch, API, server) so that the registered analyses can be accessed by var-
ious systems, like compilers, program optimizers, documentation generators, or
programming environments. Currently, CASS produces output in textual form.
The support for other kinds of visualizations is a topic for future work.

The analysis of programs is an important topic for all kinds of languages
so that there is a vast body of literature. Most of such works is related to the
development and application of various analysis methods (where some of them
related to functional logic programs have already been discussed in this paper),
but there are less works on the development or implementation of program an-
alyzers. An example of such an approach, that is in some aspects similar to our
work, is Hoopl [31]. Hoopl is a framework for data flow analysis and transfor-
mation. Like CASS, Hoopl eases the definition of analyses by offering high-level
abstractions and releases the user from tasks like writing fixpoint computations.
In contrast to our work, Hoopl works on a generic representation of data flow
graphs, whereas CASS performs incremental, module-wise analyses on an already
existing representation of functional logic programs.
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Another related system is Ciao [24], a logic programming system with an
advanced preprocessor to analyze, optimize, and verify logic programs [25]. Sim-
ilarly to CASS, the Ciao preprocessor also analyzes declarative programs in a
modular and incremental manner. However, the Ciao preprocessor does not offer
a high-level generic interface to implement new program analyses in a type safe
manner, which is the main objective of the strongly typed analysis constructors
provided by CASS.

There are only a few approaches or tools directly related to the analysis
of combined functional logic programs, as already discussed in this paper. The
examples in this paper show that this combination is valuable since analysis as-
pects of pure functional and pure logic languages can be treated in this combined
framework, like demand and higher-order aspects from functional programming
and groundness and determinism aspects from logic programming. An early sys-
tem in this direction is CIDER [21]. CIDER supports the analysis of single Curry
modules together with some graphical tracing facilities. A successor of CIDER
is CurryBrowser [17], already mentioned above, which supports the analysis and
browsing of larger applications. CASS can be considered as a more efficient and
more general implementation of the analysis component of CurryBrowser.

For future work, we will add further analyses in CASS with more advanced
abstract domains. Since this might lead to analyses with substantial run times,
the use of parallel architectures might be more relevant. Thus, it would also
be interesting to develop advanced methods to analyze module dependencies in
order to obtain a better distribution of analysis tasks between the workers.

Acknowledgements. The authors are grateful to Heiko Hoffmann for his contri-
bution to an initial version of the analysis system and to Sandra Dylus for her
suggestions to improve this paper.
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