
Concurrent Semantics for the Web Services
Specification Language DAML-S

Anupriya Ankolekar1, Frank Huch2, and Katia Sycara1

1 Carnegie Mellon University, Pittsburgh PA 15213, USA
{anupriya,katia}@cs.cmu.edu,

2 Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
fhu@informatik.uni-kiel.de

Abstract. The DARPA Agent Markup Language ontology for Services
(DAML-S) enables the description of Web-based services, such that
they can be discovered, accessed and composed dynamically by intel-
ligent software agents and other Web services, thereby facilitating the
coordination between distributed, heterogeneous systems on the Web.
We propose a formalised syntax and an initial reference semantics for
DAML-S.

Keywords: DAML-S, Web services, concurrent semantics, agents

1 Introduction

The DARPA Agent Markup Language Services ontology (DAML-S) is being
developed for the specification of Web services, such that they can be dynami-
cally discovered, invoked and composed with the help of existing Web services.
DAML-S, defined through DAML+OIL, an ontology definition language with
additional semantic inferencing capabilities, provides a number of constructs or
DAML+OIL classes to describe the properties and capabilities of Web services.
DAML-S will be used by Web service providers to markup their offerings, by
service requester agents to describe the desired services, as well as by planning
agents to compose complex new services from existing simpler services. Other
approaches to the specification of Web services from the industry are UDDI,
WSDL, WSFL and XLANG, which address different aspects of Web service de-
scription provided by DAML-S. Furthermore, DAML-S is unique in that, due
to its foundations in DAML+OIL, it provides markup that can be semantically
meaningful for intelligent agents.

Although DAML-S is intended primarily for Web-based services, the basic
framework can be extended to facilitate the coordination and interoperability,
more generally, of systems in heterogeneous, dynamic environments. In this pa-
per, we propose an interleaving, strict operational semantics for DAML-S1 in-
formally described in [1].
1 DAML-S is currently under development and the language described here is the
DAML-S Draft Release 0.5 (May 2001).

F. Arbab and C. Talcott (Eds.): COORDINATION 2002, LNCS 2315, pp. 14–21, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Concurrent Semantics for the Web Services Specification Language DAML-S 15

The development of a reference semantics for DAML-S brings any ambiguities
about the language specification to the fore so that they can be addressed and
resolved. It can also provide the basis for the future DAML-S execution model.
Furthermore, having a formal semantics is the first step towards developing tech-
niques for automated verification of functional and non-functional properties of
the DAML-S execution model. The formalisation of other Web standards would
make it easier to compare and contrast their capabilities and better understand
the strengths and weaknesses of various approaches.

In this paper, we model a core subset of DAML-S, referred to as DAML-S
Core. Every service defined in DAML-S can be transformed into a functionally
equivalent service definition in DAML-S Core stripped of additional attributes
that aid in service discovery or any quality-of-service parameters. The next sec-
tion, Section 2, presents the DAML-S ontologies and the process model of a
service. Section 3 discusses some of the issues involved in developing a formal
model for DAML-S and presents the syntax of DAML-S Core. Finally, a formal
semantics for DAML-S Core is given in Section 4.

2 The DAML-S Ontology

The DAML-S ontology consists of three parts: a service profile, a process model
and a service grounding. The service profile of a particular Web service would
enable a service-requesting agent to determine whether the service meets its
requirements. The profile is essentially a summary of the service, specifying
the input expected, the output returned, the precondition to and the effect of
its successful execution. The process model of a service describes the internal
structure of a service in terms of its subprocesses and their execution flow. It
provides a detailed specification of how another agent can interact with the
service. Each process within the process model could itself be a service, in which
case, the enclosing service is referred to as a complex service, built up from
simpler, atomic services. The service grounding describes how the service can be
accessed, in particular which communication protocols the service understands,
which ports can receive which messages and so forth.

In this paper, we will only be considering the service process model, since
it primarily determines the semantics of the service’s execution. The formali-
sation proposed here will however form the basis for an execution model and
provide inputs for the definition of the service grounding. The inputs, outputs
and effects of a process can be instances of any class in DAML+OIL. The pre-
conditions are instances of class Condition. There are a number of additional
constructs to specify the control flow within a process model: Sequence, Split,
Split+Join, If-Then-Else, Repeat-While, Repeat-Until. The execution of a
service requires communication, interaction between the participants in a ser-
vice transaction. The DAML-S constructs for communication will be described
in the future service grounding. Since modelling the communication within a
service transaction is essential to describing the execution semantics of a service
described in DAML-S, we define a set of what we consider basic communication
primitives, for example, for the sending and receiving of messages.

16 A. Ankolekar, F. Huch, and K. Sycara

3 Modelling DAML-S Core

The DAML-S class Process and its subclasses, representing agents, are mod-
elled as functions. DAML-S agents essentially take in inputs and return outputs,
exhibiting simple function-like behaviour. A Web page, for example, is an ex-
tremely simple agent which has no input and as output, merely some HTML
content. The input to a Process is not restricted and could be a Process itself,
resulting in a ’higher-order’ agent, offering meta-level functionality. A simple
example of a higher-order service is an agent that, when given a task and an
environment of existing services, locates a service to perform the task, invokes
the service and returns the result. The functionality of the agent thus depends
on the set of services in the world that it takes as input.

Furthermore, agents can be composed together. This composition itself rep-
resents an agent with its own inputs and outputs. The composition could be
sequential, dependent on a conditional or defined as a loop. The composition
could also be concurrent, where the agents can interact with each other, repre-
senting relatively complex, distributed applications, such as chat systems.

DAML-S classes are defined through DAML+OIL, an ontology definition
language. DAML+OIL, owing to its foundations in RDF Schema, provides a
typing mechanism for Web resources [8] [9], such as Web pages, people, document
types and abstract concepts. The difference between a DAML+OIL class and
a class in a typical object-oriented programming language is that DAML+OIL
classes are meant primarily for data modelling and contain no methods. Subclass
relationships are defined through the property rdfs:subClassOf. We model
classes in DAML-S as type expressions and subclasses as subtypes. Modelling
other properties with arbitrary semantics does not significantly affect the type
system or the functional behaviour of DAML-S agents and are therefore not
considered further. More formally,

Definition 1 (Type Expressions). A type expression τ ∈ T is either a type
variable α ∈ V or the application, (Tτ1 · · · τn), of an n-ary type constructor
T ∈ F to the type expressions τ1, . . . , τn.

Type constructors in F are determined by DAML-S Core classes, such as
List, Book and Process. In addition to these, DAML-S Core has a predefined
functional type constructor →, for which, following convention, we will use the
infix notation. All type constructors bind to the right, i.e. τ1 → τ2 → τ3 is read
as (τ1 → (τ2− > τ3)).

Type expressions build the term algebra TF (V). DAML-S agents can be poly-
morphic with respect to their input and output, for example an agent which
duplicates input of arbitrary type. Polymorphic types are type expressions con-
taining type variables. The expression a → b, for instance, is a polymorphic
type with type variables a and b, which can be instantiated with concrete types.
The substitution [a/integer, b/boolean] applied to a → b results in the type
integer → boolean. Identical type variables in a type expression indicate iden-
tical types. For the formalisation of polymorphism, we use type schemas, in which
all free type variables are bound: ∀α1, . . . , αn.τ , where τ is a type and α1, . . . , αn

are the generic variables in τ .

Concurrent Semantics for the Web Services Specification Language DAML-S 17

Although DAML-S Core agents can be functionally simple, they derive much
of their useful behaviour from their ability to execute concurrently and interact
with one another. The communication an agent is engaged in is a side-effect
of its functional execution. Communication side-effects can be incorporated into
the functional description of agents with the help of the IO monad. Monads were
introduced from category theory to describe programming language computa-
tions, actions with side-effects, as opposed to purely functional evaluations. The
IO monad, introduced in Concurrent Haskell [7], describes actions with commu-
nication side-effects.

The IO monad is essentially a triple, consisting of a unary type constructor
IO and two functions, return and (>>=). A value of type IO a is an I/O action,
that when performed, can engage in some communication before resulting in a
value of type a. The application return v represents an agent that performs no
IO and simply returns the value v. The function (>>=) represents the sequential
composition of two agents. Thus, action1 >>= action2 represents an agent
that first performs action1 and then action2. Consider the type of (>>=):
∀a,b.IO a → (a → IO b) → IO b. First, an action of type IO a is performed.
The result of this becomes input for the second action of type a → IO b. The
subsequent execution of this action results in a final value of type IO b. The
expression on the right-hand side of (>>=) must necessarily be a unary function
that takes an argument of type a and returns an action of type IO b.

Although the communication an agent is engaged in can be expressed with
the IO monad, we still need to describe the means through which communi-
cation between multiple agents takes place. We model communication between
agents with ports [6], a buffer in which messages can be inserted at one end
and retrieved sequentially at the other. In contrast to the channel mechanism
of Concurrent Haskell, only one agent can read from a port, although several
agents can write to it. The agent that can read from a port is considered to own
the port. Since we need to be able to type messages that are passed through
ports, each agent is modelled as having multiple ports of several different types.
This conceptualisation of ports is also close to the UNIX port concept and is
therefore a natural model for communication between distributed Web applica-
tions. Agents and services are modelled as communicating asynchronously. Due
to the unreliable nature of the Web, distributed applications for the Web are
often designed to communicate asynchronously.

Definition 2 (DAML-S Core Expressions). Let V arτ denote the set of vari-
ables of type τ . The set of DAML-S Core expressions over Σ, Exp(Σ), is defined
in Table 1. The set of expressions of type τ is denoted by Exp(Σ)τ .

Definition 3 (DAML-S Core Agents). Let xi ∈ V arτi , xi pairwise different
and e ∈ Exp(Σ)τ . A DAML-S service definition then has the following form

s x1 · · ·xn:= e

s ∈ S is said to have type τ1 → · · · → τn → τ . S denotes the set of services.

In the definition of Exp(Σ) in Table 1, we use partial application and the
curried form of function application. For a function that takes two arguments,
we use the curried type τ1 → τ2 → τ3 instead of (τ1, τ2) → τ3.

18 A. Ankolekar, F. Huch, and K. Sycara

Table 1. DAML-S Core Expressions

Port references are constructed with a unary type constructor Port ∈ F . A
send operation takes as argument a destination port and a message and sends the
message to the port, resulting in an I/O action that returns no value. Similarly,
a receive operation takes as argument a port on which it is expecting a message
and returns the first message received on the port. It thus performs an I/O action
and returns a message. To be well-typed, the type of the message and the port
must match. The spawn service takes an expression, an I/O action, as argument
and spawns a new agent to evaluate the expression, which may not contain any
free variables. The choice operator takes two I/O actions as arguments, makes
a non-deterministic choice between the two and returns it as the result. For the
application of choice to be well-typed, both its arguments must have the same
type, since either one of them could be returned as the result.

4 Semantics of DAML-S

The semantics of DAML-S has been informally described in [1]. In this section,
we describe a formal operational semantics of Core DAML-S. Our semantics
is based on the operational semantics for Erlang [2] and Concurrent Haskell
[7] programs, inspired by the structural operational semantics of CCS and the
π-calculus.

In a Σ-Interpretation A = (A, α), A is a T -sorted set of concrete values
and α an interpretation function that maps each symbol in Ω, the set of all

Concurrent Semantics for the Web Services Specification Language DAML-S 19

constructors defined through DAML+OIL, to a function over A. In particular,
A includes functional values, i.e. functions.

Definition 4 (State). A state of execution within DAML-S Core is defined as
a finite set of agents: State := Pfin(Agent)

An agent is a pair (e, ϕ), where e ∈ Exp(Σ) is the DAML-S Core expression
being evaluated and ϕ is a partial function, mapping port references onto actual
ports:

Agent := Exp(Σ) × {ϕ | ϕ :PortRef−→PortA
τ }

for all τ , where PortA
τ := (Aτ)∗ and PortRef is an infinite set of globally known

unique port references, disjoint with A. Since no two agents can have a common
port, the domains of their port functions ϕ are also disjoint.

Definition 5 (Evaluation Context). The set of evaluation contexts EC [10]
for DAML-S Core is defined by the context-free grammar

E := [] | φ(v1, . . . , vi, E, ei+2, en) | (E e) | (v E) | E>>= e

for v ∈ A, e, e1, e2 ∈ Exp(Σ), φ ∈ Ω ∪ S\{spawn, choice}.
Definition 6 (Operational Semantics). The operational semantics of
DAML-S is −→⊂ State×State is defined in Tables 2 and 3. For (s, s′) ∈−→,
we write s −→ s′, denoting that state s can transition into state s′.

The application of a defined service is essentially the same as the application
rule, except that the arguments to s must be evaluated to values, before they
can be substituted into e. In a [SEQ], if the left-hand side of >>= returns a value
v, then v is fed as argument to the expression e on the right-hand side. That is,
the output of the left-hand side of >>= is input to e.

Evaluating spawn e results in a new parallel agent being created, which evalu-
ates e and has no ports, thus ϕ is empty. Creating a new port with port descriptor
p involves extending the domain of ϕ with p and setting its initial value to be
the empty word ε. The port descriptor p is returned to the creating agent.

Table 2. Semantics of DAML-S Core - I

20 A. Ankolekar, F. Huch, and K. Sycara

The evaluation of a receive expression p? retrieves and returns the first value
of p. The port descriptor mapping ϕ is modified to reflect the fact that the first
message of p has been extracted. Similarly, the evaluation of a send expression,
p!v, results in v being appended to the word at p. Since port descriptors are
globally unique, there will only be one such p in the system.

The rules for (COND-FALSE) and (CHOICE-RIGHT) are similar to the rules
for (COND-TRUE) and (CHOICE-LEFT) given in Table 3. If the condition b
evaluates to True, then the second argument e1 is evaluated next, else if the
condition b evaluates to False, the third argument e2 is evaluated next. For a
choice expression e1+e2, if the expression on the left e1 can be evaluated, then it
is evaluated. Similarly, the right-hand side e2 is evaluated, if it can be evaluated.
However, the choice of which one is evaluated is made non-deterministically.

Table 3. Semantics of DAML-S Core - II

Concurrent Semantics for the Web Services Specification Language DAML-S 21

5 Conclusions

We have presented a formal syntax and semantics for the Web services specifi-
cation language DAML-S. Having a reference semantics for DAML-S during its
design phase helps inform its further development, bringing out ambiguities and
clarification issues. It can also form a basis for the future DAML-S execution
model. With a formal semantics facilitates the construction of automatic tools
to assist in the specification of Web services. Techniques to automatically verify
properties of Web service specifications can also be explored with the foundation
of a formal semantics. Since DAML-S is still evolving, the semantics needs to be
constantly updated to keep up with current specifications of the language.

References

1. The DAML Services Coalition. DAML-S: Semantic Markup For Web Services. In
Proceedings of the International Semantic Web Workshop, 2001

2. Frank Huch. Verification of Erlang Programs using Abstract Interpretation and
Model Checking. ACM International Conference of Functional Programming 1999.

3. Tackling the awkward squad: monadic input/output, concurrency, exceptions, and
foreign calls in Haskell. November 2000.
http://research.microsoft.com/Users/simonpj/papers/marktoberdorf.htm

4. Simon Peyton Jones and John Hughes, editors. Haskell 98: A Non-strict, Purely
Functional Language http://www.haskell.org/onlinereport/

5. Philip Wadler. Monads for functional programming. In J. Jeuring and E. Meijer,
editors, Advanced Functional Programming, Springer Verlag, LNCS 925, 1995.

6. Frank Huch and Ulrich Norbisrath. Distributed Programming in Haskell with
Ports. Lecture Notes in Computer Science, Vol. 2011, 2000.

7. Simon Peyton Jones and Andrew Gordon and Sigbjorn Finne. Concurrent Haskell.
POPL ’96: The 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages. St. Petersburg Beach, Florida, pg. 295–308, 1996.

8. Annotated DAML+OIL Ontology Markup
http://www.daml.org/2001/03/daml+oil-walkthru.html

9. Dan Brickley and R. V. Guha. Resource Description Framework (RDF) Schema
Specification 1.0, W3C Candidate Recommendation 27 March 2000.
http://www.w3c.org/TR/rdf-schema/

10. Matthias Felleisen and Daniel P. Friedman and Eugene E. Kohlbecker and Bruce
Duba. A syntactic theory of sequential control. Theoretical Computer Science, Vol.
52, No. 3, pg. 205–237, 1987.

	1 Introduction
	2 The DAML-S Ontology
	3 Modelling DAML-S Core
	4 Semantics of DAML-S
	5 Conclusions

